By Topic

Using Tag-Neighbors for Query Expansion in Medical Information Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Frederico Durao ; Dept. of Comput. Sci., Aalborg Univ., Aalborg, Denmark ; Karunakar Bayyapu ; Guandong Xu ; Peter Dolog
more authors

In the context of medical document retrieval, users often under-specified queries lead to undesired search results that suffer from not containing the information they seek, inadequate domain knowledge matches and unreliable sources. To overcome the limitations of under-specified queries, we utilize tags to enhance information retrieval capabilities by expanding users' original queries with context-relevant information. We compute a set of significant tag neighbor candidates based on the neighbor frequency and weight, and utilize the most frequent and weighted neighbors to expand an entry query that has terms matching tags. The proposed approach is evaluated using MedWorm medical article collection and standard evaluation methods from the text retrieval conference (TREC). We compared the baseline of 0.353 for Mean Average Precision (MAP), reaching a MAP 0.491 (+39%) with the query expansion. In-depth analysis shows how this strategy is beneficial when compared with different ranks of the retrieval results.

Published in:

2011 International Conference on Information Science and Applications

Date of Conference:

26-29 April 2011