By Topic

Detection of Magnetically Labelled Microcarriers for Suspension Based Bioassay Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. N. Vyas ; TFM Group, Cavendish Laboratory,, University of Cambridge,, Cambridge , U.K. ; B. Hong ; J. F. K. Cooper ; J. J. Palfreyman
more authors

Microarrays and suspension-based assay technologies have attracted significant interest over the past decade with applications ranging from medical diagnostics to high throughput molecular biology. The throughput and sensitivity of a microarray will always be limited by the array density and slow reaction kinetics. Suspension (or bead) based technologies offer a conceptually different approach, improving detection by substituting a fixed plane of operation with millions of microcarriers. However, these technologies are currently limited by the number of unique labels that can be generated in order to identify the molecular probes on the surface. We have proposed a novel suspension-based technology that utilizes patterned magnetic films for the purpose of generating a writable label. The microcarriers consist of an SU-8 substrate that can be functionalized with various chemical or biological probes and magnetic elements, which are individually addressable by a magnetic sensor. The magnetization of each element is aligned in one of two stable directions, thereby acting as a magnetic bit. In order to detect the stray field and identify the magnetic labels, we have developed a microfluidic device with an integrated tunneling magnetoresistive (TMR) sensor, sourced from Micro Magnetics Inc. We present the TMR embedding architecture as well as detection results demonstrating the feasibility of magnetic labeling for lab-on-a-chip applications.

Published in:

IEEE Transactions on Magnetics  (Volume:47 ,  Issue: 6 )