By Topic

Graded Anisotropy FePtCu Films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Randy K. Dumas$^{1}$ Department of Physics,, University of Gothenburg,, Gothenburg, Sweden ; Chaolin Zha ; Yeyu Fang ; Valentina Bonanni
more authors

The fabrication and subsequent analysis of continuously graded anisotropy films are discussed. During deposition, a compositional gradient is first achieved by varying the Cu concentration from Cu-rich (Fe53Pt47)70Cu30 to Cu-free Fe53Pt47. The anisotropy gradient is then realized after thermal post-annealing, and by utilizing the strong composition dependence of the low-anisotropy (A1) to high-anisotropy (L10) ordering temperature. The magnetic properties are investigated by surface sensitive magneto-optical Kerr effect and alternating gradient magnetometer (AGM) measurements. AGM first-order reversal curve (FORC) measurements are employed in order to provide a detailed analysis of the reversal mechanisms, and therefore the induced anisotropy gradient. At low annealing temperatures, the FORC measurements clearly indicate the highly coupled reversal of soft and hard phases. However, significant interdiffusion results in virtually uniform films at elevated annealing temperatures. Additionally, the A1 to L10 ordering process is found to depend on the film thickness.

Published in:

IEEE Transactions on Magnetics  (Volume:47 ,  Issue: 6 )