By Topic

Anisotropic Transmission-Line Metamaterials for 2-D Transformation Optics Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zedler, M. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Eleftheriades, G.V.

In this contribution, we present a two-dimensional metamaterial unit cell which synthesizes effective material parameters needed for “transformation optics” applications. The metamaterial consists of a grid of reactively loaded transmission-line segments and is a generalization of a previously presented unit cell in that it also synthesizes off-diagonal elements of the permeability tensor. We apply this unit cell to two “transformation optics” applications, a retro-directive reflector, and a cloak. This cloak is different from the so-far reported split-ring-resonator/wire structures in that it not only synthesizes the required μρ and εz distribution but also the μφ one. For the cloak, detailed radar cross-section (RCS) and bandwidth results are presented. It is shown that the total RCS bandwidth is 33.5%, and that losses influence the cloaking performance not critically, pointing to the possibility of practical “transformation optics” designs using the proposed unit cell. Full-wave simulation results of a transmission-line metamaterial cloak in microstrip technology are presented, verifying that the unit cell presented in this paper synthesizes the effective material parameters needed for “transformation optics” or applications that require effective material parameters with off-diagonal tensor elements.

Published in:

Proceedings of the IEEE  (Volume:99 ,  Issue: 10 )