By Topic

Quasi-3D Light Confinement in Double Photonic Crystal Reflectors VCSELs for CMOS-Compatible Integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Sciancalepore, C. ; Ecole Centrale de Lyon, Inst. des Nanotechnol., Ecully, France ; Bakir, B.B. ; Letartre, X. ; Fedeli, J.
more authors

A novel architecture of one-dimensional photonic crystal membrane (PCM) reflectors embodying a heterostructure is proposed as a robust design aimed at a 3-D efficient confinement of light in single-mode polarization-controlled 1.55-μm vertical-cavity surface-emitting laser (VCSEL) microsources for heterogeneous integration on complementary metal-oxide-semiconductor (CMOS). On the basis of a theoretical approach, the paper focuses on the deep interweaving between the kinetics of light transport in the mirrors and the physical nature of the exploited Fano resonances. An example of VCSEL design for optical pumping employing heterostructure-confined photonic crystal mirrors is presented. The predicted photons kinetics along with the considerable improvement in cavity modal features owing to the enhanced mirror architecture have been confirmed by performing rigorous three-dimensional finite-difference time-domain (3-D FDTD) calculations. Finally, experimental observations of photoluminescence (PL) emission performed on first-ever fabricated devices for optical pumping show striking agreement with theoretical considerations and ab initio modelling.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 13 )