By Topic

Voltage stability control of a wind generation system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Rahim, A.H.M.A. ; Electr. Eng. Dept., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Alam, M.A. ; Amin, I.E. ; Abido, M.A.
more authors

Voltage instability is the main cause of concern for the large scale integration of wind power into the power grid. For the induction generator based wind generation system, the fixed capacitor located at the generator terminal can not normally cater for the reactive power demand during the transient disturbances like wind gusts and faults on the system. This paper presents two schemes for enhancing voltage stability of grid connected wind generator system. These are: variable susceptance control thru SVC and reactive power compensation through static compensator system (STATCOM). Simulation results show that both schemes are well capable of providing voltage stability and damping transient arising from reasonable level of disturbances. The STATCOM, however, demonstrates superior performance because of its fast response capability as well as its ability to provide compensation independent of system voltage support.

Published in:

Energy Conference and Exhibition (EnergyCon), 2010 IEEE International

Date of Conference:

18-22 Dec. 2010