Cart (Loading....) | Create Account
Close category search window
 

Novel Generic Bounds on the Sum Rate of MIMO ZF Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matthaiou, M. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden ; Caijun Zhong ; Ratnarajah, T.

This paper introduces some novel upper and lower bounds on the achievable sum rate of multiple-input multiple-output (MIMO) systems with zero-forcing (ZF) receivers. The presented bounds are not only tractable but also generic since they apply for different fading models of interest, such as uncorrelated/correlated Rayleigh fading and Ricean fading. We further formulate a new relationship between the sum rate and the first negative moment of the unordered eigenvalue of the instantaneous correlation matrix. The derived expressions are explicitly compared with some existing results on MIMO systems operating with optimal and minimum mean-squared error (MMSE) receivers. Based on our analytical results, we gain valuable insights into the implications of the model parameters, such as the number of antennas, spatial correlation and Ricean-K factor, on the sum rate of MIMO ZF receivers.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.