By Topic

Online Updating With a Probability-Based Prediction Model Using Expectation Maximization Algorithm for Reliability Forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang-Hua Hu ; Xi''an Inst. of Hi-tech, Xi''an, China ; Xiao-Sheng Si ; Jian-Bo Yang ; Zhi-Jie Zhou

Recently, a novel prediction model based on the evidential reasoning (ER) approach is developed to forecast reliability in engineering systems. In order to determine the parameters of the ER-based prediction model, some optimization models have been proposed to train the ER-based prediction model. However, these models are implemented in an offline fashion and thus it is very expensive to train and retrain them when new information is available. This correspondence paper is concerned with developing the recursive algorithms for updating the ER-based prediction model from the probability-based point of view. Using the recursive expectation maximization algorithm, two recursive algorithms are proposed for updating the parameters of the ER-based prediction model under judgmental and numerical outputs, respectively. As such, the proposed algorithms can be used to fine tune the ER-based prediction model online once new information becomes available. We verify the proposed method via a realistic example with missile reliability data.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:41 ,  Issue: 6 )