By Topic

Intercomparison and Validation of Techniques for Spectral Unmixing of Hyperspectral Images: A Planetary Case Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ceamanos, X. ; Inst. de Planetologie et d''Astrophys. de Grenoble (IPAG), UJF, Grenoble, France ; Doute, S. ; Bin Luo ; Schmidt, F.
more authors

As the volume of hyperspectral data for planetary exploration increases, efficient yet accurate algorithms are decisive for their analysis. In this paper, the capability of spectral unmixing for analyzing hyperspectral images from Mars is investigated. For that purpose, we consider the Russell megadune observed by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the High-Resolution Imaging Science Experiment (HiRISE) instruments. In late winter, this area of Mars is appropriate for testing linear unmixing techniques because of the geographical coexistence of seasonal CO2 ice and defrosting dusty features that is not resolved by CRISM. Linear unmixing is carried out on a selected CRISM image by seven state-of-the-art approaches based on different principles. Three physically coherent sources with an increasing fingerprint of dust are recognized by the majority of the methods. Processing of HiRISE imagery allows the construction of a ground truth in the form of a reference abundance map related to the defrosting features. Validation of abundances estimated by spectral unmixing is carried out in an independent and quantitative manner by comparison with the ground truth. The quality of the results is estimated through the correlation coefficient and average error between the reconstructed and reference abundance maps. Intercomparison of the selected linear unmixing approaches is performed. Global and local comparisons show that misregistration inaccuracies between the HiRISE and CRISM images represent the major source of error. We also conclude that abundance maps provided by three methods out of seven are generally accurate, i.e., sufficient for a planetary interpretation.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 11 )