By Topic

Modeling and Formalization of Fuzzy Finite Automata for Detection of Irregular Fire Flames

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Byoung Chul Ko ; Dept. of Comput. Eng., Keimyung Univ., Daegu, South Korea ; Sun Jae Ham ; Jae Yeal Nam

Fire-flame detection using a video camera is difficult because a flame has irregular characteristics, i.e., vague shapes and color patterns. Therefore, in this paper, we propose a novel fire-flame detection method using fuzzy finite automata (FFA) with probability density functions based on visual features, thereby providing a systemic approach to handling irregularity in computational systems and the ability to handle continuous spaces by combining the capabilities of automata with fuzzy logic. First, moving regions are detected via background subtraction, and the candidate flame regions are then identified by applying flame color models. In general, flame regions have a continuous irregular pattern; therefore, probability density functions are generated for the variation in intensity, wavelet energy, and motion orientation and applied to the FFA. The proposed algorithm is successfully applied to various fire/non-fire videos, and its detection performance is better than that of other methods.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:21 ,  Issue: 12 )