By Topic

Application of Quasi-Distributed and Dynamic Length and Power Change Measurement Using Optical Frequency Domain Reflectometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liehr, S. ; Working Group Distrib. & Polymer Opt. Fibre Sensors, BAM Fed. Inst. for Mater. Res. & Testing, Berlin, Germany ; Krebber, K.

Application results of a dynamic technique for simultaneous measurement of length changes and optical power changes between multiple reflection points in an optical fiber are presented. The technique is based on incoherent optical frequency domain reflectometry (I-OFDR) and allows for measuring for example length changes and optical power changes quasi-distributed at repetition rates up to 2 kHz. Precise measurement with length change resolutions in the -range can be conducted using standard single-mode or multi-mode fibers. Previous results of dynamic refractive index change measurement and the use of polymer optical fibers for high-strain measurement are concluded and possible sources of measurement inaccuracies are discussed. Field test results with sensors installed on a masonry building during a seismic shake test are presented. The versatility and simplicity of this technique makes it potentially interesting for application in the structural health monitoring sector and chemical process control.

Published in:

Sensors Journal, IEEE  (Volume:12 ,  Issue: 1 )