By Topic

A co-training framework for visual tracking with multiple instance learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huchuan Lu ; Sch. of Inf. & Commun., Dalian Univ. of Technol., Dalian, China ; Qiuhong Zhou ; Dong Wang ; Ruan Xiang

This paper proposes a Co-training Multiple Instance Learning algorithm (CoMIL). Our framework is based on the co-training approach which labels incoming data continuously, and then uses the prediction from each classifier to enlarge the training set of the other. The discriminative classifier is implemented using online multiple instance learning (MIL), which can deal with inaccurate positive samples in the updating process and allow some flexibility while finding a decision boundary. Firstly, two classifiers are improved mutually in our CoMIL tracking system. Secondly, our update mechanism uses multiple potential positives according to the MIL which handles the update error due to the risk of extracting only one positive example. Experiments show that our CoMIL tracking algorithm performs better than several state-of-the-art tracking algorithms on challenging sequences.

Published in:

Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on

Date of Conference:

21-25 March 2011