Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Real-time inference of mental states from facial expressions and upper body gestures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Baltrusaitis, T. ; Comput. Lab., Univ. of Cambridge, Cambridge, UK ; McDuff, D. ; Banda, N. ; Mahmoud, M.
more authors

We present a real-time system for detecting facial action units and inferring emotional states from head and shoulder gestures and facial expressions. The dynamic system uses three levels of inference on progressively longer time scales. Firstly, facial action units and head orientation are identified from 22 feature points and Gabor filters. Secondly, Hidden Markov Models are used to classify sequences of actions into head and shoulder gestures. Finally, a multi level Dynamic Bayesian Network is used to model the unfolding emotional state based on probabilities of different gestures. The most probable state over a given video clip is chosen as the label for that clip. The average F1 score for 12 action units (AUs 1, 2, 4, 6, 7, 10, 12, 15, 17, 18, 25, 26), labelled on a frame by frame basis, was 0.461. The average classification rate for five emotional states (anger, fear, joy, relief, sadness) was 0.440. Sadness had the greatest rate, 0.64, anger the smallest, 0.11.

Published in:

Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on

Date of Conference:

21-25 March 2011