By Topic

Optical and Electrical Properties of GaN-Based Light Emitting Diodes Grown on Micro- and Nano-Scale Patterned Si Substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Ching-Hsueh Chiu ; Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan ; Chien-Chung Lin ; Dong-Mei Deng ; Da-Wei Lin
more authors

We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on micro- and nano-scale patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nano-scale epitaxial lateral overgrowth. The plan-view and cross-section cathodoluminescence mappings show less defective and more homogeneous active quantum-well region growth on nano-porous substrates. From temperature-dependent photoluminescence (PL) and low temperature time-resolved PL measurement, NPLEDs have better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibit smaller electroluminescence peak wavelength blue shift, lower reverse leakage current and decrease in efficiency droop when compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.

Published in:

IEEE Journal of Quantum Electronics  (Volume:47 ,  Issue: 7 )