By Topic

A Hybrid Framework for Fault Detection, Classification, and Location—Part I: Concept, Structure, and Methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Joe-Air Jiang ; Dept. of Bio-Ind. Mechatron. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Cheng-Long Chuang ; Yung-Chung Wang ; Chih-Hung Hung
more authors

Bridging the gap between the theoretical modeling and the practical implementation is always essential for fault detection, classification, and location methods in a power transmission-line network. In this paper, a novel hybrid framework that is able to rapidly detect and locate a fault on power transmission lines is presented. The proposed algorithm presents a fault discrimination method based on the three-phase current and voltage waveforms measured when fault events occur in the power transmission-line network. Negative-sequence components of the three-phase current and voltage quantities are applied to achieve fast online fault detection. Subsequently, the fault detection method triggers the fault classification and fault-location methods to become active. A variety of methods-including multilevel wavelet transform, principal component analysis, support vector machines, and adaptive structure neural networks-are incorporated into the framework to identify fault type and location at the same time. This paper lays out the fundamental concept of the proposed framework and introduces the methodology of the analytical techniques, a pattern-recognition approach via neural networks and a joint decision-making mechanism. Using a well-trained framework, the tasks of fault detection, classification, and location are accomplished in 1.28 cycles, significantly shorter than the critical fault clearing time.

Published in:

Power Delivery, IEEE Transactions on  (Volume:26 ,  Issue: 3 )