By Topic

Bayesian Robust Principal Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xinghao Ding ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Lihan He ; Carin, L.

A hierarchical Bayesian model is considered for decomposing a matrix into low-rank and sparse components, assuming the observed matrix is a superposition of the two. The matrix is assumed noisy, with unknown and possibly non-stationary noise statistics. The Bayesian framework infers an approximate representation for the noise statistics while simultaneously inferring the low-rank and sparse-outlier contributions; the model is robust to a broad range of noise levels, without having to change model hyperparameter settings. In addition, the Bayesian framework allows exploitation of additional structure in the matrix. For example, in video applications each row (or column) corresponds to a video frame, and we introduce a Markov dependency between consecutive rows in the matrix (corresponding to consecutive frames in the video). The properties of this Markov process are also inferred based on the observed matrix, while simultaneously denoising and recovering the low-rank and sparse components. We compare the Bayesian model to a state-of-the-art optimization-based implementation of robust PCA; considering several examples, we demonstrate competitive performance of the proposed model.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 12 )