By Topic

An Approach Based on Sensitivity Analysis for the Evaluation of Process Variability in Nanoscale MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Valentina Bonfiglio ; Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, e Telecomunicazioni, Università di Pisa, Pisa, Italy ; Giuseppe Iannaccone

We propose an approach to evaluate the effect on the threshold-voltage dispersion of nanoscale metal-oxide-semiconductor field-effect transistors (MOSFETs) of line-edge roughness, surface roughness, and random dopant distribution. The methodology is fully based on parameter sensitivity analysis, performed by means of a limited number of technology computer-aided design simulations or analytical modeling. We apply it to different nanoscale transistor structures, i.e., bulk 45-nm n-channel, 32-nm ultrathin-body silicon-on-insulator, and 22-nm double-gate MOSFETs. In all cases, our approach is capable of reproducing with very good accuracy the results obtained through 3-D atomistic statistical simulations at a small computational cost. We believe that the proposed approach can be a powerful tool to understand the role of the main variability sources and to explore the device design parameter space.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 8 )