By Topic

List Viterbi decoding algorithms with applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Seshadri ; Signal Process. Res. Dept., AT&T Bell Labs., Murray Hill, NJ, USA ; C. -E. W. Sundberg

A list Viterbi decoding algorithm (LVA) produces a rank ordered list of the L globally best candidates after a trellis search. The authors present two such algorithms, (i) a parallel LVA that simultaneously produces the L best candidates and (ii) a serial LVA that iteratively produces the kth best candidate based on knowledge of the previously found k-1 best paths. The application of LVA to a concatenated communication system consisting of an inner convolutional code and an outer error detecting code is considered in detail. Analysis as well as simulation results show that significant improvement in error performance is obtained when the inner decoder, which is conventionally based on the Viterbi algorithm (VA), is replaced by the LVA. An improvement of up to 3 dB is obtained for the additive white Gaussian noise (AWGN) channel due to an increase in the minimum Euclidean distance. Ever larger gains are obtained for the Rayleigh fading channel due to an increase in the time diversity. It is also shown that a 10% improvement in throughput is obtained along with significantly reduced probability of a decoding failure for a hybrid FEC/ARQ scheme with the inner code being a rate compatible punctured convolutional (RCPC) code

Published in:

IEEE Transactions on Communications  (Volume:42 ,  Issue: 234 )