Cart (Loading....) | Create Account
Close category search window
 

A non-filamentary model for unipolar switching transition metal oxide resistance random access memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xue, Kan-Hao ; Department of Electrical and Computer Engineering, University of Colorado, Colorado Springs, Colorado 80918, USA ; Paz de Araujo, Carlos A. ; Celinska, Jolanta ; McWilliams, Christopher

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3581193 

A model for resistance random access memory (RRAM) is proposed. The RRAM under research utilizes certain transition metal oxide (TMO) such as NiO which shows unipolar switching behavior. The existence of metal/insulator states is not explained by filaments but attributed to different Hubbard U values, which stems from an electron correlation effect. Current-voltage formulae are given both on the metal and insulator sides by putting the appropriate solutions of Hubbard model into the mesoscopic Meir-Wingreen transport equation. The RESET phenomenon is explained by a sufficient separation of Fermi levels in the electrodes and hence a Mott transition can be triggered in the anodic region due to a lack of electrons. The SET behavior originates from a tunneling current which removes the insulating region near the anode. Several experimental evidences are also presented to support this model. The model also serves as the theoretical prototype of Correlated Electron Random Access Memory (CeRAM) which is defined to be a TMO RRAM whose working mechanism is based on the strong electron correlation effects.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 9 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.