Cart (Loading....) | Create Account
Close category search window
 

Angular Embedding: A Robust Quadratic Criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yu, S.X. ; Comput. Sci. Dept., Boston Coll., Chestnut Hill, MA, USA

Given the size and confidence of pairwise local orderings, angular embedding (AE) finds a global ordering with a near-global optimal eigensolution. As a quadratic criterion in the complex domain, AE is remarkably robust to outliers, unlike its real domain counterpart LS, the least squares embedding. Our comparative study of LS and AE reveals that AE's robustness is due not to the particular choice of the criterion, but to the choice of representation in the complex domain. When the embedding is encoded in the angular space, we not only have a nonconvex error function that delivers robustness, but also have a Hermitian graph Laplacian that completely determines the optimum and delivers efficiency. The high quality of embedding by AE in the presence of outliers can hardly be matched by LS, its corresponding L1 norm formulation, or their bounded versions. These results suggest that the key to overcoming outliers lies not with additionally imposing constraints on the embedding solution, but with adaptively penalizing inconsistency between measurements themselves. AE thus significantly advances statistical ranking methods by removing the impact of outliers directly without explicit inconsistency characterization, and advances spectral clustering methods by covering the entire size-confidence measurement space and providing an ordered cluster organization.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.