By Topic

A Unified Framework for Biometric Expert Fusion Incorporating Quality Measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Poh, N. ; Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK ; Kittler, J.

This paper proposes a unified framework for quality-based fusion of multimodal biometrics. Quality-dependent fusion algorithms aim to dynamically combine several classifier (biometric expert) outputs as a function of automatically derived (biometric) sample quality. Quality measures used for this purpose quantify the degree of conformance of biometric samples to some predefined criteria known to influence the system performance. Designing a fusion classifier to take quality into consideration is difficult because quality measures cannot be used to distinguish genuine users from impostors, i.e., they are nondiscriminative yet still useful for classification. We propose a general Bayesian framework that can utilize the quality information effectively. We show that this framework encompasses several recently proposed quality-based fusion algorithms in the literature-Nandakumar et al., 2006; Poh et al., 2007; Kryszczuk and Drygajo, 2007; Kittler et al., 2007; Alonso-Fernandez, 2008; Maurer and Baker, 2007; Poh et al., 2010. Furthermore, thanks to the systematic study concluded herein, we also develop two alternative formulations of the problem, leading to more efficient implementation (with fewer parameters) and achieving performance comparable to, or better than, the state of the art. Last but not least, the framework also improves the understanding of the role of quality in multiple classifier combination.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 1 )
Biometrics Compendium, IEEE
RFIC Virtual Journal, IEEE
RFID Virtual Journal, IEEE