By Topic

Frequency-Selective Noise-Compensated Autoregressive Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Weruaga, L. ; Khalifa Univ. of Sci., Technol. & Res., Sharjah, United Arab Emirates

This paper presents a novel method for noise-compensated autoregressive estimation founded on the maximum-likelihood of the spectral samples. This framework yields a nonlinear optimization problem that can be revamped as a reweighted least-square problem. The resulting spectral weighting function turns out to be the square of the Wiener filter, this meaning that spectral regions with higher signal-to-noise ratio are more relevant in the estimation. Furthermore, this frequency-selective scenario allows us to interpret this problem as one of incomplete samples. From that perspective, an approximate accuracy bound for autoregressive analysis in noise is deduced. Simulated experiments prove the validity of the method foundations, showing as well the excellent performance of the numerical algorithm versus state-of-the-art techniques.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 10 )