By Topic

Faster ray tracing using adaptive grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Klimaszewski, K. ; Cimetrix, UT, USA ; Sederberg, T.W.

A new hybrid approach is presented which outperforms the regular grid technique in scenes with highly irregular object distributions by a factor of hundreds, and combined with an area interpolator, by a factor of thousands. Much has been said about scene independence of different acceleration techniques and the alleged superiority of one approach over another. Several theoretical and practical studies conducted in the past have led to the same conclusion: a space partitioning method that allows the fastest rendering of one scene often fails with another. Specialization may be the answer. This has always been pursued, consciously or not, in developing various ray-tracing systems. Despite our new algorithm's impressive efficiency, we don't interpret the new method as the fastest ray-tracing scene decomposition possible. This is because our recent groundwork experiments with a derivative method produced in some of the test scenes presented in this article produced timings that were better by approximately 50%

Published in:

Computer Graphics and Applications, IEEE  (Volume:17 ,  Issue: 1 )