Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Robust Chip-Level Clock Tree Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rajaram, A. ; Magma Design Autom., Austin, TX, USA ; Pan, D.Z.

Chip-level clock tree synthesis (CCTS) is a key problem that arises in complex system-on-a-chip designs. A key requirement of CCTS is to balance the clock-trees belonging to different IPs such that the entire tree has a small skew across all process corners. Achieving this is difficult because the clock trees in different IPs might be vastly different in terms of their clock structures and cell/interconnect delays. The chip-level clock tree is expected to compensate for these differences and achieve good skews across all corners. Also, CCTS is expected to reduce clock divergence between IPs that have critical timing paths between them. Reducing clock divergence reduces the maximum possible clock skew in the critical paths between the IPs and thus improves yield. This paper proposes effective CCTS algorithms to simultaneously reduce multicorner skew and clock divergence. Experimental results on several test-cases indicate that our methods achieve 30% reduction in the clock divergence with significantly improved multicorner skew variance, at the cost of 2% increase in buffer area and 1% increase in wirelength.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:30 ,  Issue: 6 )