By Topic

Using dynamic programming for solving variational problems in vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. A. Amini ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; T. E. Weymouth ; R. C. Jain

Dynamic programming is discussed as an approach to solving variational problems in vision. Dynamic programming ensures global optimality of the solution, is numerically stable, and allows for hard constraints to be enforced on the behavior of the solution within a natural and straightforward structure. As a specific example of the approach's efficacy, applying dynamic programming to the energy-minimizing active contours is described. The optimization problem is set up as a discrete multistage decision process and is solved by a time-delayed discrete dynamic programming algorithm. A parallel procedure for decreasing computational costs is discussed

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:12 ,  Issue: 9 )