By Topic

A Decision-Based Velocity Ramp for Minimizing the Effect of Misclassifications During Real-Time Pattern Recognition Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ann M. Simon ; Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago, USA ; Levi J. Hargrove ; Blair A. Lock ; Todd A. Kuiken

Real-time pattern recognition control is frequently affected by misclassifications. This study investigated the use of a decision-based velocity ramp that attenuated movement speed after a change in classifier decision. The goal was to improve prosthesis positioning by minimizing the effect of unintended movements. Nonamputee and amputee subjects controlled a prosthesis in real time using pattern recognition. While performing a target achievement test in a virtual environment, subjects had a significantly higher completion rate (p <; 0.05) and a more direct path (p <; 0.05) to the target with the velocity ramp than without it. Using a physical prosthesis, subjects stacked a greater average number of 1-in cubes (p <; 0.05) in 3 min with the velocity ramp than without it (76% more blocks for nonamputees; 89% more blocks for amputees). Real-time control using the velocity ramp also showed significant performance improvements above using majority vote. Eighty-three percent of subjects preferred to control the prosthesis using the velocity ramp. These results suggest that using a decision-based velocity ramp with pattern recognition may improve user performance. Since the velocity ramp is a postprocessing step, it has the potential to be used with a variety of classifiers for many applications.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:58 ,  Issue: 8 )