By Topic

Deriving probabilistic databases with inference ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stoyanovich, J. ; Univ. of Pennsylvania, Philadelphia, PA, USA ; Davidson, S. ; Milo, T. ; Tannen, V.

Many real-world applications deal with uncertain or missing data, prompting a surge of activity in the area of probabilistic databases. A shortcoming of prior work is the assumption that an appropriate probabilistic model, along with the necessary probability distributions, is given. We address this shortcoming by presenting a framework for learning a set of inference ensembles, termed meta-rule semi-lattices, or MRSL, from the complete portion of the data. We use the MRSL to infer probability distributions for missing data, and demonstrate experimentally that high accuracy is achieved when a single attribute value is missing per tuple. We next propose an inference algorithm based on Gibbs sampling that accurately predicts the probability distribution for multiple missing values. We also develop an optimization that greatly improves performance of multi-attribute inference for collections of tuples, while maintaining high accuracy. Finally, we develop an experimental framework to evaluate the efficiency and accuracy of our approach.

Published in:

Data Engineering (ICDE), 2011 IEEE 27th International Conference on

Date of Conference:

11-16 April 2011