By Topic

Balancing load in stream processing with the cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wilhelm Kleiminger ; Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Switzerland ; Evangelia Kalyvianaki ; Peter Pietzuch

Stream processing systems must handle stream data coming from real-time, high-throughput applications, for example in financial trading. Timely processing of streams is important and requires sufficient available resources to achieve high throughput and deliver accurate results. However, static allocation of stream processing resources in terms of machines is inefficient when input streams have significant rate variations-machines remain under-utilised for long periods of average load. We present a combined stream processing system that, as the input stream rate varies, adaptively balances workload between a dedicated local stream processor and a cloud stream processor. This approach only utilises cloud machines when the local stream processor becomes overloaded. We evaluate a prototype system with financial trading data. Our results show that it can adapt effectively to workload variations, while only discarding a small percentage of input data.

Published in:

Data Engineering Workshops (ICDEW), 2011 IEEE 27th International Conference on

Date of Conference:

11-16 April 2011