By Topic

Interpretation of inconsistencies via context consistency diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Degeler, V. ; Distrib. Syst. Group, Univ. of Groningen, Groningen, Netherlands ; Lazovik, A.

Pervasive context-aware systems base their responses on information about the environment collected from ubiquitous sensors. The inevitable drawback of such systems is that raw data collected from sensors is often noisy, corrupted, and imprecise. Erroneous sensor readings create uncertainties and ambiguous interpretations. Thus creating an interpretation challenge for the context-aware system that needs to reason about possible states of only partially observable subjects. We propose a mechanism for pervasive context-aware systems to process the information gathered from sensors so to obtain knowledge about possible environment states. This includes both the ability to reason about a situation with incomplete knowledge and to cope with erroneous contexts. We present a probabilistic approach to reason about the likelihood of each particular situation, state of a variable, and variable interdependence. The evaluation shows that the proposed approach is applicable to real-time context inference problems.

Published in:

Pervasive Computing and Communications (PerCom), 2011 IEEE International Conference on

Date of Conference:

21-25 March 2011