Cart (Loading....) | Create Account
Close category search window

Thermal performance of FCMBGA: Exposed molded die compared to lidded package

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Galloway, J. ; Amkor Technol. Inc., Chandler, AZ, USA ; Kanuparthi, S. ; Qun Wan

Thermal resistance data were collected using two different style flip chip ball grid array (FCBGA) packages; one with an exposed molded die and a second with a lid. Eleven different heat sink designs and two different thermal interface materials (TIM) were tested to quantify the thermal interaction between heat sink size, base material and TIM resistance as a function of package style. Package style and TIM material did not appreciably change the total thermal resistance (less than 10%) for small heat sinks 50 mm × 50 mm smaller. The exposed molded die package thermal resistance was 14% smaller than the lidded package when tested with a heat pipe heat sink. An understanding of the long term performance impact of TIM II degradation was investigated using conduction based models. Lidded style packages may increase safety margin when TIM II materials experience pump-out, dry-out or voiding.

Published in:

Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2011 27th Annual IEEE

Date of Conference:

20-24 March 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.