By Topic

Keystroke-dynamics authentication against synthetic forgeries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stefan, D. ; Dept. of Electr. Eng., Cooper Union, New York, NY, USA ; Danfeng Yao

We describe the use of keystroke-dynamics patterns for authentication and detecting infected hosts, and evaluate its robustness against forgery attacks. Specifically, we present a remote authentication framework called TUBA for monitoring a user's typing patterns. We evaluate the robustness of TUBA through comprehensive experimental evaluation including two series of simulated bots. Support vector machine is used for classification. Our results based on 20 users' keystroke data are reported. Our work shows that keystroke dynamics is robust against synthetic forgery attacks studied, where attacker draws statistical samples from a pool of available keystroke datasets other than the target. TUBA is particularly suitable for detecting extrusion in organizations and protecting the integrity of hosts in collaborative environments, as well as authentication.

Published in:

Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2010 6th International Conference on

Date of Conference:

9-12 Oct. 2010