By Topic

A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Suren Chilingaryan ; Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany ; Alessandro Mirone ; Andrew Hammersley ; Claudio Ferrero
more authors

Advances in digital detector technology leads presently to rapidly increasing data rates in imaging experiments. Using fast two-dimensional detectors in computed tomography, the data acquisition can be much faster than the reconstruction if no adequate measures are taken, especially when a high photon flux at synchrotron sources is used. We have optimized the reconstruction software employed at the micro-tomography beamlines of our synchrotron facilities to use the computational power of modern graphic cards. The main paradigm of our approach is the full utilization of all system resources. We use a pipelined architecture, where the GPUs are used as compute coprocessors to reconstruct slices, while the CPUs are preparing the next ones. Special attention is devoted to minimize data transfers between the host and GPU memory and to execute memory transfers in parallel with the computations. We were able to reduce the reconstruction time by a factor 30 and process a typical data set of 20 GB in 40 seconds. The time needed for the first evaluation of the reconstructed sample is reduced significantly and quasi real-time visualization is now possible.

Published in:

IEEE Transactions on Nuclear Science  (Volume:58 ,  Issue: 4 )