By Topic

A CMOS Single-Chip Gas Recognition Circuit for Metal Oxide Gas Sensor Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kwan Ting Ng ; Sch. of Electr., Electron. & Comput. Eng., Univ. of Western Australia, Crawley, WA, Australia ; Boussaid, F. ; Bermak, A.

This paper presents a CMOS single-chip gas recognition circuit, which encodes sensor array outputs into a unique sequence of spikes with the firing delay mapping the strength of the stimulation across the array. The proposed gas recognition circuit examines the generated spike pattern of relative excitations across the population of sensors and looks for a match within a library of 2-D spatio-temporal spike signatures. Each signature is drift insensitive, concentration invariant and is also a unique characteristic of the target gas. This VLSI friendly approach relies on a simple spatio-temporal code matching instead of existing computationally expensive pattern matching statistical techniques. In addition, it relies on a novel sensor calibration technique that does not require control or prior knowledge of the gas concentration. The proposed gas recognition circuit was implemented in a 0.35 μm CMOS process and characterized using an in-house fabricated 4 × 4 tin oxide gas sensor array. Experimental results show a correct detection rate of 94.9% when the gas sensor array is exposed to propane, ethanol and carbon monoxide.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 7 )