Cart (Loading....) | Create Account
Close category search window
 

Symbolic Analysis of Sonar Data for Underwater Target Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mukherjee, K. ; Pennsylvania State Univ., University Park, PA, USA ; Gupta, S. ; Ray, A. ; Phoha, S.

This paper presents a symbolic pattern analysis method for robust feature extraction from sidescan sonar images that are generated from autonomous underwater vehicles (AUVs). The proposed data-driven algorithm, built upon the concepts of symbolic dynamics and automata theory, is used for detection of mines and mine-like objects in the undersea environment. This real-time algorithm is based on symbolization of the data space via coarse graining, i.e., partitioning of the two-dimensional sonar images. The statistical information, in terms of stochastic matrices that serve as features, is extracted from the symbolized images by construction of probabilistic finite state automata. A binary classifier is designed for discrimination of detected objects into mine-like and nonmine-like categories. The pattern analysis algorithm has been validated on sonar images generated in the exploration phase of a mine hunting operation; these data have been provided by the Naval Surface Warfare Center. The algorithm is formulated for real-time execution on limited-memory commercial-of-the-shelf platforms and is capable of detecting objects on the seabed-bottom.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:36 ,  Issue: 2 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.