Cart (Loading....) | Create Account
Close category search window
 

Information-Based Complexity, Feedback and Dynamics in Convex Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raginsky, M. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Rakhlin, A.

We study the intrinsic limitations of sequential convex optimization through the lens of feedback information theory. In the oracle model of optimization, an algorithm queries an oracle for noisy information about the unknown objective function and the goal is to (approximately) minimize every function in a given class using as few queries as possible. We show that, in order for a function to be optimized, the algorithm must be able to accumulate enough information about the objective. This, in turn, puts limits on the speed of optimization under specific assumptions on the oracle and the type of feedback. Our techniques are akin to the ones used in statistical literature to obtain minimax lower bounds on the risks of estimation procedures; the notable difference is that, unlike in the case of i.i.d. data, a sequential optimization algorithm can gather observations in a controlled manner, so that the amount of information at each step is allowed to change in time. In particular, we show that optimization algorithms often obey the law of diminishing returns: the signal-to-noise ratio drops as the optimization algorithm approaches the optimum. To underscore the generality of the tools, we use our approach to derive fundamental lower bounds for a certain active learning problem. Overall, the present work connects the intuitive notions of “information” in optimization, experimental design, estimation, and active learning to the quantitative notion of Shannon information.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.