By Topic

An Iterative Ensemble Kalman Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lorentzen, R.J. ; IRIS-Int. Res. Inst. of Stavanger, Bergen, Norway ; Naevdal, G.

The ensemble Kalman filter is a Monte Carlo method for state estimation of nonlinear models, developed as an alternative or improvement of the extended Kalman filter. In this technical note we introduce an iterative extension to the ensemble Kalman filter. Iterations are introduced to improve the estimates in the cases where the relationship between the model and observations is not linear. The iterations converge, but to a solution where the data are overfitted. An essential stopping criteria is therefore introduced for the proposed method.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 8 )