By Topic

Charge Domain Interlace Scan Implementation in a CMOS Image Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Xu ; Electron. Instrum. Lab., Delft Univ. of Technol., Delft, Netherlands ; Mierop, A.J. ; Theuwissen, A.J.P.

This paper presents the first CMOS image sensor which implements a charge domain interlacing principle to improve the signal-to-noise ratio (SNR) under equal exposure condition (integration time and light intensity). Inspired by the shared amplifier pixel structure, a novel pixel is designed to fit the charge domain interlacing principle, which works in field integration and frame integration mode. The designed image sensor is implemented in TSMC 0.18 μm CIS technology. This CMOS image sensor also contains a programmable universal image sensor peripheral circuit, allowing this sensor also to support normal progressive scan. By comparing the performances of the sensor working in charge domain interlacing and in the progressive scan, the chip measurement results prove that under the same exposure condition, the light response of the charge domain interlacing is twice that of the progressive scan. The SNR performance can be increased by 6 dB in low light level conditions.

Published in:

Sensors Journal, IEEE  (Volume:11 ,  Issue: 11 )