Cart (Loading....) | Create Account
Close category search window

Experimental Demonstrations and Extensive Comparisons of End-to-End Real-Time Optical OFDM Transceivers With Adaptive Bit and/or Power Loading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Jin, X.Q. ; Sch. of Electr. Eng., Bangor Univ., Bangor, UK ; Wei, J.L. ; Giddings, R.P. ; Quinlan, T.
more authors

Experimental demonstrations are reported for end-to-end real-time optical orthogonal frequency division multiplexing (OOFDM) transceivers incorporating three widely adopted adaptive loading techniques, namely, power loading (PL), bit loading (BL), and bit-and-power loading (BPL). In directly modulated distributed-feedback (DFB) laser-based, intensity-modulation, and direct-detection (IMDD) transmission systems consisting of up to 35-km single-mode fibers (SMFs), extensive experimental comparisons between these adaptive loading techniques are made in terms of maximum achievable signal bit rate, optical power budget, and digital signal processing (DSP) resource usage. It is shown that BPL is capable of supporting end-to-end real-time OOFDM transmission of 11.75 Gb/s over 25-km SMFs in the aforementioned systems at sampling speeds as low as 4 GS/s. In addition, experimental measurements also show that BPL (PL) offers the highest (lowest) signal bit rate, and their optical power budgets are similar. The observed signal bit rate difference between BPL and PL is almost independent of sampling speed and transmission distance. All the aforementioned key features agree very well with numerical simulations. On the other hand, BPL-consumed DSP resources are approximately three times higher than those required by PL. The results indicate that PL is a preferred choice for cost-effective OOFDM transceiver design.

Published in:

Photonics Journal, IEEE  (Volume:3 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.