By Topic

3-D motion estimation using a sequence of noisy stereo images: models, estimation, and uniqueness results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. -S. J. Young ; Dept. of Electr. Eng.-Syst., Univ. of Southern California. Los Angeles, CA, USA ; R. Chellappa

A kinematic model-based approach for the estimation of 3-D motion parameters from a sequence of noisy stereo images is discussed. The approach is based on representing the constant acceleration translational motion and constant precession rotational motion in the form of a bilinear state-space model using standard rectilinear states for translation and quaternions for rotation. Closed-form solutions of the state transition equations are obtained to propagate the quaternions. The measurements are noisy perturbations of 3-D feature points represented in an inertial coordinate system. It is assumed that the 3-D feature points are extracted from the stereo images and matched over the frames. Owing to the nonlinearity in the state model, nonlinear filters are designed for the estimation of motion parameters. Simulation results are included. The Cramer-Rao performance bounds for motion parameter estimates are computed. A constructive proof for the uniqueness of motion parameters is given. It is shown that with uniform sampling in time, three noncollinear feature points in five consecutive binocular image pairs contain all the spatial and temporal information. Both nondegenerate and degenerate motions are analyzed. A deterministic algorithm to recover motion parameters from a stereo image sequence is summarized from the constructive proof

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:12 ,  Issue: 8 )