Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Distributed Roadmaps for Robot Navigation in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhenwang Yao ; Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; Gupta, K.

This paper studies a distributed path-planning problem: How can a sensor network help navigate a nontrial robot to its desired goal in a distributed manner? We consider the case where each sensor node is equipped with sophisticated sensors capable of giving a map for its sensing region. We propose a distributed sampling-based planning algorithm, where every sensor node creates a local roadmap in its locally sensed environment; these local roadmaps are “stitched” together by passing messages among nodes and forming a larger implicit roadmap without having a global representation. Based on the implicit roadmap, a feasible path is computed in a distributed manner, and the robot moves along the path by interacting with sensor nodes, each of which giving a portion of the path within the local environment of the node. Simulations show that the algorithm is able to solve the path-planning problem with low communication overhead.

Published in:

Robotics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )