By Topic

A Quality Prediction Method for Building Model Reconstruction Using LiDAR Data and Topographic Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rey-Jer You ; Dept. of Geomatics, Nat. Cheng Kung Univ., Tainan, Taiwan ; Bo-Cheng Lin

This paper integrates light detection and ranging (LiDAR) data and topographic maps and predicts the quality of 3-D building model reconstruction. In this paper, the tensor voting algorithm and a region-growing method are adopted to extract building roof planes and structural lines from LiDAR data, and a robust least squares method is applied to register LiDAR data with building outlines obtained from topographic maps. The minimal square sum of the separations of the most peripheral points to building outlines is adopted as the criterion for determining the transformation parameters in order to improve the efficiency of data fusion. After registration, a novel quality indicator of data fusion based on the tensor analysis of residuals is derived in order to evaluate the quality of the automatic reconstruction of 3-D building models. Finally, an actual LiDAR data set and its corresponding topographic map demonstrate the fusion procedure and the quality of the predictions related to automatic model reconstruction.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 9 )