By Topic

Motion Regularization for Matting Motion Blurred Objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hai Ting Lin ; Sch. of Comput., Nat. Univ. of Singapore, Singapore, Singapore ; Yu-Wing Tai ; Brown, M.S.

This paper addresses the problem of matting motion blurred objects from a single image. Existing single image matting methods are designed to extract static objects that have fractional pixel occupancy. This arises because the physical scene object has a finer resolution than the discrete image pixel and therefore only occupies a fraction of the pixel. For a motion blurred object, however, fractional pixel occupancy is attributed to the object's motion over the exposure period. While conventional matting techniques can be used to matte motion blurred objects, they are not formulated in a manner that considers the object's motion and tend to work only when the object is on a homogeneous background. We show how to obtain better alpha mattes by introducing a regularization term in the matting formulation to account for the object's motion. In addition, we outline a method for estimating local object motion based on local gradient statistics from the original image. For the sake of completeness, we also discuss how user markup can be used to denote the local direction in lieu of motion estimation. Improvements to alpha mattes computed with our regularization are demonstrated on a variety of examples.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 11 )