By Topic

Blind Separation of Superimposed Moving Images Using Image Statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kun Gai ; Tsinghua University, Beijing ; Zhenwei Shi ; Changshui Zhang

We address the problem of blind separation of multiple source layers from their linear mixtures with unknown mixing coefficients and unknown layer motions. Such mixtures can occur when one takes photos through a transparent medium, like a window glass, and the camera or the medium moves between snapshots. To understand how to achieve correct separation, we study the statistics of natural images in the Labelme data set. We not only confirm the well-known sparsity of image gradients, but also discover new joint behavior patterns of image gradients. Based on these statistical properties, we develop a sparse blind separation algorithm to estimate both layer motions and linear mixing coefficients and then recover all layers. This method can handle general parameterized motions, including translations, scalings, rotations, and other transformations. In addition, the number of layers is automatically identified, and all layers can be recovered, even in the underdetermined case where mixtures are fewer than layers. The effectiveness of this technology is shown in experiments on both simulated and real superimposed images.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 1 )