Cart (Loading....) | Create Account
Close category search window

Statistical 3D Shape Analysis by Local Generative Descriptors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Castellani, U. ; Dipt. di Inf., Univ. of Verona, Verona, Italy ; Cristani, M. ; Murino, V.

In this paper, we propose a new approach for surface representation. Generative models are exploited for encoding the variations of local geometric properties of 3D shapes. Surfaces are locally modeled as a stochastic process which spans a neighborhood area through a set of circular geodesic pathways, captured by a modified version of a Hidden Markov Model (HMM) named multicircular HMM (MC-HMM). The approach proposed consists of two main phases: 1) local geometric feature collection and 2) MC-HMM parameter estimation. The effectiveness of our proposal is demonstrated by several applicative scenarios, all using well-known benchmark data sets, such as multiple view registration, matching of deformable shapes, and object recognition on cluttered scenes. The results achieved are very promising and open up the use of generative models as geometric descriptors in an extensive range of applications.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 12 )

Date of Publication:

Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.