Cart (Loading....) | Create Account
Close category search window
 

Link Positions Matter: A Noncommutative Routing Metric for Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jakllari, G. ; Raytheon BBN Technol., Cambridge, MA, USA ; Eidenbenz, S. ; Hengartner, N. ; Krishnamurthy, S.V.
more authors

We revisit the problem of computing the path with the minimum cost in terms of the expected number of link layer transmissions (including retransmissions) in wireless mesh networks. Unlike previous efforts, such as the popular ETX, we account for the fact that MAC protocols (including the IEEE 802.11 MAC) incorporate a finite number of transmission attempts per packet. This in turn leads to our key observation: the performance of a path depends not only on the number of the links on the path and the quality of its links, but also, on the relative positions of the links on the path. Based on this observation, we propose ETOP, a path metric that accurately captures the expected number of link layer transmissions required for reliable end-to-end packet delivery. We analytically compute ETOP, which is not trivial, since ETOP is a noncommutative function of the link success probabilities. Although ETOP is a more involved metric, we show that the problem of computing paths with the minimum ETOP cost can be solved by a greedy algorithm. We implement and evaluate a routing approach based on ETOP on a 25-node indoor mesh network. Our experiments show that the path selection with ETOP consistently results in superior TCP goodput (by over 50 percent in many cases) compared to path selection based on ETX. We also perform an in-depth analysis of the measurements to better understand why the paths selected by ETOP improve the TCP performance.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:11 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.