Cart (Loading....) | Create Account
Close category search window
 

Heuristics-Based Query Processing for Large RDF Graphs Using Cloud Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Husain, M. ; Amazon.com, Seattle, WA, USA ; McGlothlin, J. ; Masud, M.M. ; Khan, L.
more authors

Semantic web is an emerging area to augment human reasoning. Various technologies are being developed in this arena which have been standardized by the World Wide Web Consortium (W3C). One such standard is the Resource Description Framework (RDF). Semantic web technologies can be utilized to build efficient and scalable systems for Cloud Computing. With the explosion of semantic web technologies, large RDF graphs are common place. This poses significant challenges for the storage and retrieval of RDF graphs. Current frameworks do not scale for large RDF graphs and as a result do not address these challenges. In this paper, we describe a framework that we built using Hadoop to store and retrieve large numbers of RDF triples by exploiting the cloud computing paradigm. We describe a scheme to store RDF data in Hadoop Distributed File System. More than one Hadoop job (the smallest unit of execution in Hadoop) may be needed to answer a query because a single triple pattern in a query cannot simultaneously take part in more than one join in a single Hadoop job. To determine the jobs, we present an algorithm to generate query plan, whose worst case cost is bounded, based on a greedy approach to answer a SPARQL Protocol and RDF Query Language (SPARQL) query. We use Hadoop's MapReduce framework to answer the queries. Our results show that we can store large RDF graphs in Hadoop clusters built with cheap commodity class hardware. Furthermore, we show that our framework is scalable and efficient and can handle large amounts of RDF data, unlike traditional approaches.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.