By Topic

Accelerating Matrix Operations with Improved Deeply Pipelined Vector Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi-Gang Tai ; Dept. of Comput. Sci., Univ. of Texas at San Antonio, San Antonio, TX, USA ; Chia-Tien Dan Lo ; Psarris, K.

Many scientific or engineering applications involve matrix operations, in which reduction of vectors is a common operation. If the core operator of the reduction is deeply pipelined, which is usually the case, dependencies between the input data elements cause data hazards. To tackle this problem, we propose a new reduction method with low latency and high pipeline utilization. The performance of the proposed design is evaluated for both single data set and multiple data set scenarios. Further, QR decomposition is used to demonstrate how the proposed method can accelerate its execution. We implement the design on an FPGA and compare its results to other methods.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 2 )