By Topic

Iterative Dictionary Construction for Compression of Large DNA Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kuruppu, S. ; Dept. of Comput. Sci. & Software Eng., Univ. of Melbourne, Parkville, VIC, Australia ; Beresford-Smith, B. ; Conway, T. ; Zobel, J.

Genomic repositories increasingly include individual as well as reference sequences, which tend to share long identical and near-identical strings of nucleotides. However, the sequential processing used by most compression algorithms, and the volumes of data involved, mean that these long-range repetitions are not detected. An order-insensitive, disk-based dictionary construction method can detect this repeated content and use it to compress collections of sequences. We explore a dictionary construction method that improves repeat identification in large DNA data sets. Our adaptation, Comrad, of an existing disk-based method identifies exact repeated content in collections of sequences with similarities within and across the set of input sequences. Comrad compresses the data over multiple passes, which is an expensive process, but allows Comrad to compress large data sets within reasonable time and space. Comrad allows for random access to individual sequences and subsequences without decompressing the whole data set. Comrad has no competitor in terms of the size of data sets that it can compress (extending to many hundreds of gigabytes) and, even for smaller data sets, the results are competitive compared to alternatives; as an example, 39 S. cerevisiae genomes compressed to 0.25 bits per base.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 1 )