By Topic

Identification of Relevant Properties for Epitopes Detection Using a Regression Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ambroise, J. ; Inst. of Inf. & Commun. Technol., Electron. & Appl. Math., Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium ; Giard, J. ; Gala, J. ; Macq, B.

A B-cell epitope is a part of an antigen that is recognized by a specific antibody or B-cell receptor. Detecting the immunogenic region of the antigen is useful in numerous immunodetection and immunotherapeutics applications. The aim of this paper is to find relevant properties to discriminate the location of potential epitopes from the rest of the protein surface. The most relevant properties, identified using two evaluation approaches, are the geometric properties, followed by the conservation score and some chemical properties, such as the proportion of glycine. The selected properties are used in a patch-based epitope localization method including a Single-Layer Perceptron for regression. The output of this Single-Layer Perceptron is used to construct a probability map on the antigen surface. The predictive performances of the method are assessed by computing the AUC using cross validation on two benchmark data sets and by computing the AUC and the precision for a third independent test set.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 6 )