By Topic

Electromigration, fuse and thermo-mechanical performance of solder bump versus Cu pillar flip chip assemblies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Two different flip chip bump configurations have been investigated in terms of their thermo-mechanical, electromigration and fusing behaviour. Standard SAC (SnAgCu) solder bumps with a Ni/Au finish on the chip side are compared with Cu pillar bumps soldered with a thin layer of SnAg alloy. For the test structure, the flip chip assembly is integrated in a BGA package. Finite Element Modelling is used to support the experimental work and explain some of the conclusions.

Published in:

Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2011 12th International Conference on

Date of Conference:

18-20 April 2011